YEAR 6 MATHEMATICS

Requests and enquiries concerning copyright should be addressed to:
Manager Intellectual Property and Copyright
Department of Education
151 Royal Street
EAST PERTH WA 6004

Except where indicated, this content is © Department of Education Western Australia 2020 and released under a Creative Commons CC BY NC licence. Before re-purposing any third party content in this resource refer to the owner of that content for permission.

- There is one mental maths activity sheet per day.
- Spend 10-15 minutes at the beginning of each maths lesson on mental maths. Get as much of each day's activity done as possible. If all mental is not finished, leave it. Your teacher will review the amount you have completed. If you finish working on the task early you can come back to unfinished mental.
- Start a new activity each day.
- The mental activities revise and consolidate various mathematical processes and strategies. Home tutors should encourage students to use different strategies to solve problems rather than just focusing on answers being correct.
- Complete all activities in the space provided. If additional space is needed, use lined paper ruled with a margin, include your name, date and activity. Number activities clearly and attach them to the appropriate mental activity sheet.
- Include your mental sheets with all other work when you send it in to the teacher.

1 To help you tell the time you need to know some time facts.
Complete these.
\qquad hours in a day
minutes in an hour
minutes in half an hour
minutes in quarter of an hour
seconds in a minute
seconds in 3 minutes
days in a week
weeks in a year

If students are not sure of the answers, they could check the meaning of the terms hour, minute, second and year in a dictionary, or search the Internet, or ask a family member.

2 Estimate how long you think each of the following activities will take. Use the stopwatch in the kit to time yourself completing each activity. Record your findings in the table below.

Activity	Estimation	Actual time taken
Write your first name 7 times.		
Write out the 4 times table.		
Complete 10 star jumps.		
Get a drink of water		

Were your estimations close?

Keep practising estimation wherever possible. It's a useful math strategy in many situations.

3 You just completed an activity which required you to use estimation skills.
a) List situations where you have used estimation to help calculate. Ask friends, family members or your home tutor to give different ideas.
\qquad
\qquad
\qquad
\qquad
b) Explain how you know if your estimations are close enough to the answer.
\qquad
\qquad
\qquad
\qquad

4 Magic squares
The numbers on vertical, horizontal and diagonal lines in magic squares must all add up to the same amount. For example 2, 9 and 4 add to 15 , so all the other lines must also equal 15.

Complete these magic squares.

2	9	4
		8

16		12
	13	17
		10

22		23
	20	19
	25	18

15		
20		
19		21

Describe how you solved these. What strategies did you use?

Challenge

Look at the grid below.

9	72	56
21	7	3
63	24	8

Each number in the grid is surrounded by two, three or four lines. The lines can be used as a code to write some number sentences.

For example, where you see this $\quad \ldots$, write the number 9.

Where you see this \square , write the number 7 .

The grid could be used to write number sentences. One has been done for you.

Write 3 number sentences of your own using the code. Be sure to write the solution.

1 A class of students were recently asked to name their favourite leisure activities. The survey results are shown on the Venn diagram below.

a) What would be a suitable title for this Venn diagram?
b) How many students enjoy watching television only? \qquad
c) How many students enjoy going to the creek only? \qquad
d) How many students enjoy reading and going to the creek only?
\qquad
e) How many students enjoy all three leisure activities? \qquad
f) How many students do not enjoy any of these leisure activities? \qquad
g) Total number of students in the class is \qquad

2 Convert these seconds to minutes. (There are 60 seconds in 1 minute).
a) 60 seconds $=$ \qquad minute \qquad seconds
b) 94 seconds = \qquad minute \qquad seconds
c) 110 seconds = \qquad minute \qquad seconds
d) 148 seconds = \qquad minutes \qquad seconds
e) 187 seconds = \qquad minutes \qquad seconds

3 Convert these minutes to hours and minutes. (There are 60 minutes in 1 hour).
a) 60 minutes $=$ \qquad hour \qquad minutes
b) 82 minutes $=$ \qquad hour \qquad minutes
c) 99 minutes $=$ \qquad hour \qquad minutes
d) 140 minutes $=$ \qquad hours \qquad minutes
e) 206 minutes $=$ \qquad hours \qquad minutes

4 Convert these hours to days. (There are 24 hours in 1 day).
a) 24 hours $=$ \qquad day
b) 48 hours $=$ \qquad days
c) 96 hours $=$ \qquad days
d) 72 hours $=$ \qquad days

5 Convert these.
1 min= \qquad secs

1 hour = \qquad mins or \qquad secs

1 day = \qquad hours or \qquad mins or \qquad secs

1 week = \qquad days or \qquad hours or \qquad mins or \qquad secs

1 leap year = \qquad months or \qquad weeks or \qquad days or \qquad hours

Ghallenge

A student on a farm has dogs and birds.
There are 15 heads and 50 legs between them. How many dogs are there? \qquad

1 Take the 3 dice from the kit. Roll them five times.
Find the sum and the product of the numbers after each roll. Record your findings in the table below.

Roll of the die	Total	Product
eg $6,4,2$	$6+4+2=12$	$6 \times 4 \times 2=48$

2 Complete these mentally. Show how you worked them out.
a) If you buy 5 pairs of socks and each pair costs $\$ 2 \cdot 95$, what is the total cost? \qquad
b) Add these numbers: $9,9,19,19$

What is the total? \qquad
What is an easy way to add these numbers?
\qquad
c) A recipe requires 250 g of sugar. How much sugar is required for 5 recipes? \qquad
d) To share $\$ 25$ between 4 people, how much does each person receive? \qquad
e) $364-198=$ \qquad
f) $4 \times 14=$ \qquad

3 How long is a minute?
Experiment with your stopwatch to see if you can work out how long a minute is.

Start the stopwatch. Without looking, stop when you think one minute has passed.

Write the actual time. Do this for 3 trials. Each time try to improve on your estimations. Complete the table below. Record the estimation and the actual time for the 3 trials.

Start time

Stop time

0:00:00 \qquad
\qquad
\qquad
\qquad
\qquad

Did you get a better understanding of how long a minute is?

4 Think of the numbers 20, 30 and 105.
What prime number is a common factor of each of these numbers? \qquad

Challenge

In a race, Jolise came first.
Marlene came last.
Yolanda finished ahead of Xaviour but just behind Wesley.
Who came third? \qquad
Who came fourth? \qquad
How many students were in the race? \qquad

1 Complete these. The first one has been done for you.

	16	24	18	8	52	19	30	42	100
+6	22								

	4	9	8	6	3	12	7	5	100
$\times 7$	28								

2 A basketball match takes 3 hours 25 minutes.
Write 3 possible starting and finishing times.

Start: \qquad

Start: \qquad

Start: \qquad

Finish: \qquad

Finish: \qquad

Finish: \qquad

3 Solve these mentally. Show the numbers you would multiply first to make the calculation easier to do.
a) $4 \times 2 \times 5=$ \qquad
b) $7 \times 4 \times 5=$ \qquad
c) $6 \times 3 \times 5=$ \qquad
d) $5 \times 7 \times 8=$ \qquad

4 Order these measurements from shortest to longest. Number them 1 (shortest) to 4 (longest). The first one has been done for you.
a) 39 cm (3)
320 cm (4)
2 cm (1)
25 cm (2)
b) 1100 mm
72 mm
316 mm
8 mm
c) $12 \cdot 3 \mathrm{~cm}$
946 mm
346 mm
3 cm
d) 85 kg
e) 1.36 km
1350 m
$9 \cdot 25 \mathrm{~km}$
922 m

Challenge

On a dartboard, any dart that lands in the outer ring is worth double that number.

For example, if it lands in the outer ring of 12 you score double 12 (which is 24).

The inner ring is worth treble the number.

For example, if it lands in the inner ring of 8 you score treble 8 (which is 24).

List the scores from 1-48 you can obtain using only 1 dart.

List which scores are impossible.
\qquad
\qquad

1 a) Estimate how long you think it will take to complete the number sentences below.

This activity enables students to practise estimating and
the four
operations.
($x,-, \div,+$)
$.0 \bigcirc$

For b), students need to think about how many weeks in a year. For c), students need to think about how many hours in a day. For d), think about how many seconds in a minute.
For e) think about how many hours in a week.

Estimate: \qquad minutes \qquad seconds
a) $17+19=$ \qquad
f) $27 \div 3=$ \qquad
b) \qquad $+8=51$
g) $108 \div$ \qquad $=9$
c) $6+121=$ \qquad
h) $100-36=$ \qquad
d) \qquad $\times 7=28$
i) $802-$ \qquad $=722$
e) $3 \times 5=$ \qquad j) $0 \times 76=$ \qquad
b) Complete the number sentences. Use a calculator when you cannot solve them mentally. Write the letter ' M ' next to the ones you solved mentally.
Use the stopwatch in the kit to record the actual time it took.

Actual time: \qquad minutes \qquad seconds

Was your estimation close?

2 Answer the following. One has been done for you.
What fraction of a week is 3 days? $\frac{3}{7}$ (3 days out of 7 days in a week)
a) What fraction of a week is 6 days? \qquad
b) What fraction of a year is 7 weeks? \qquad
c) What fraction of a day is 2 hours? \qquad
d) What fraction of a minute is 11 seconds? \qquad
e) What fraction of a week is 9 hours?

3 The time is 3:25.
Show this time as many different ways as possible.

4 Use < or > to make these statements true.
1009 _ 1509

$$
25000 \quad 52064
$$

$79109 \quad 79100$
167791 __ 168791
464000 _ 500000
$7 \cdot 83 \quad$ 9.25
$1.08 \quad 1.80$
$136.2 \quad 497.5$

Challenge

You need to choose a relay team to run in a 26 km marathon.
You can choose the number of runners in the team, however guidelines insist there must be a minimum of 3 runners and a maximum of 10 runners.

Rules state it is essential that each person in the team runs the same distance.

How many runners in your team? \qquad
What distance must each person run? \qquad
Prove your answers.

The smaller part of the less than sign (<) points to the smallest number. The larger part (>) points to the larger number.
For example,
$17<25$ and
$198>42$

1 Complete these multiplication facts.

Number	$\times 10$
0.873	
8.73	
$87 \cdot 3$	
873	
8730	
87300	

What pattern do you notice? \qquad

Explain why this pattern happens.
\qquad
\qquad

2 Select the best unit of time to measure the following.
Time spent on school holidays \qquad
Time spent sleeping each day \qquad
Length of a school term \qquad
Your age \qquad
Time taken to sneeze \qquad
Time taken to travel to New Zealand by plane \qquad

Units of time:
hours
minutes
days
seconds
fortnight
week
month
decade
year

Time taken to eat breakfast \qquad
Time taken to play hockey \qquad
Eating an icecream \qquad
Time taken to build a house \qquad

a) Circle 3 items you would purchase from the menu.

Calculate the cost of those items. \$ \qquad
b) What is the cost of purchasing a can of cool drink and a pizza? \$ \qquad
c) What is the cost to purchase a pie and small fries? \$ \qquad
d) How much change would I get from $\$ 10: 00$ if I bought a hot dog and a large fries? \qquad
e) Would $\$ 10: 00$ be enough money to purchase a burger, small fries and a bottle of cool drink? How much change would you get? \qquad

Challenge

Write the digits $3,5,8$ or 9 in the boxes to complete the number

You may use each digit more than once in each number sentence.

Hint:
$\square=\begin{gathered}1 \text { digit } \\ \text { number }\end{gathered}$
$\square=2$ digit number sentences. You may need to use a calculator.

1 List 3 morning events and 3 afternoon events you do on a Saturday．

am	$\mathbf{p m}$

2 Draw 2 lines through the clock face so that the numbers in each area of the clock add up to the same total．

Show your solution on the clock outline below．

3 Complete this division table．

	$8 \div$	$16 \div$	$32 \div$	$40 \div$	$64 \div$
1					
2	4	8			
4					
8					

Describe any pattern you notice． \qquad
\qquad
\qquad
\qquad

4 What does this graph tell you?

What type of graph is this? \qquad
What season do you think it is most likely to be? \qquad
Why? \qquad

5 Complete this number sequence.
$100-7=93$
$1632-12=1620$
$100-17=83$
$1632-22=1610$
$100-27=73$
$1632-32=1600$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What pattern do you notice?

Challenge

Write the numbers $1-8$ (including 1 and 8) in each circle. Make sure consecutive numbers are not joined by a line.

Consecutive
numbers are numbers which follow each other in an unbroken sequence. For example, 1, 2, 3, 4,5 , or 101 , 102, 103, 104 .

1 Complete this table.

\times	4	9	12	8	7
5					
7	28	63			
8					
11					
10					

2 Use a calculator:
a) to solve 5×21 without using the 5 key. Use a calculator:

Write a number sentence to show how you did it.
b) to solve 8×39 without using the 9 key.

Write a number sentence to show how you did it.
c) to solve 7×125 without using the 2 key.

Write a number sentence to show how you did it.
d) Write your own question similar to those above.

Use a calculator to solve \qquad without using the \square key.

Write a number sentence to show how you did it.

3 How many squares are there in this shape? (Hint: the squares can be different sizes)

Answer: \qquad

4 Write the missing numbers along each number line.

Challenge

Write the numbers $1,2,3,4$, and 5 into each of the sections so each circle has the same total.

Write the numbers $1-7$ into each of the sections so each circle has the same total.

1 Convert these 24 hour times to 12 hour times. Remember to write 'am' or 'pm' next to each.

0230 h	720 h
$1249 \mathrm{~h}-$	
$2030 \mathrm{~h}-$	
$2232 \mathrm{~h}-$	1430 h 1923 h 0

2 Write these numbers in words.

873

1697 \qquad

34319 \qquad
\qquad

45072 \qquad
\qquad

743931 \qquad
\qquad

349007 \qquad
\qquad

1647946

\qquad
\qquad

3085313 \qquad
\qquad

Say each number aloud to your home tutor.

3 You decide to prepare an evening meal for 7 pm .
Entreé: \quad Mini spring rolls (take 10 minutes to heat)
Main Meal: Corn on the cob (takes 5 minutes) Chicken and potato pie (takes 30 minutes to cook)

Dessert: Sweet Apple pie (takes 45 minutes to cook)

Show a timeline of how you would prepare the evening meal.
Remember to include the start and finish cooking times for each dish.

Remember, entreé needs to be ready first, and the main meal dishes need to be ready to eat at the same time.

4 Show the times on these analog clocks.
a) It is 20 past $6 \longrightarrow 25$ minutes later it will be \qquad

b) It is 35 past $11 \longrightarrow 45$ minutes later it will be \qquad

c) It is 8 minutes past $6 \longrightarrow 16$ minutes later it will be \qquad

Challenge

These 5 students like to eat different types of rolls for lunch: vegemite, ham, salad, cheese and polony.

Which roll does each student prefer? Use the clues provided to solve the puzzle.

1 No girls like to eat a cheese roll.
2 No boys like vegemite rolls.
3 Matt and Josephine do not like ham rolls.
4 Cassandra likes to eat ham or salad rolls.
5 Ed and Charles dislike polony rolls.
6 Charles' favourite roll is salad.

Which roll does each student like to eat?

1 A one hour video tape records 60 minutes of televison footage．
A two hour video tape records \qquad minutes of televison footage．

How many minutes of footage does a three hour tape record？ \qquad
How many minutes of footage does a four hour tape record？ \qquad

What length video would be most suitable to record the duration of these programs：

55 minutes？ \qquad
70 minutes？ \qquad
175 minutes？ \qquad
200 minutes？ \qquad

2 Write the next 3 numbers in this sequence．
$0,1,4,9,16$ ， \qquad ， \qquad ， \qquad ，
How did you work out what the next numbers were？
\qquad
\qquad
\qquad

3 Complete these word problems．
a）A CD runs for 1 hour and 5 minutes．What time would the CD have started if it finished at $9: 10 \mathrm{pm}$ ？
b）Chantelle works the following hours：
Monday：4：15 to 6：00 pm
Tuesday：No work
Wednesday：4：20 to 6：10 pm
Thursday：5：45 to 8：20 pm
Friday：No work
Saturday：8：30 to 12：40 pm

How many hours and minutes will Chantelle be paid for this week？ \qquad
c) A basketball match started at 9:00 am. There are four 12 minute quarters, with a 2 minute break between each quarter. What time did the game finish? \qquad am
d) In a relay, the first length took 24 minutes, the second length took 26 minutes and the third length took 28 minutes. How long did the relay take? \qquad
e) In a marathon team relay, the first swimmer completed their length in 3 hours 5 minutes, the second swimmer finished in 3 hours 56 minutes, the third swimmer in 4 hours 11 minutes.
How long did it take the three swimmers to complete the race?
\qquad
f) How many seconds in a day? \qquad
g) The video Zar and Peta were watching started at 8:55 and finished at 10:40. How long was the video? \qquad

Challenge

Students in a year 6 class were given this number sentence:
$4 \cdot 5+0 \cdot 34=$?
This is how one student explained his working out.

Explain why Luke's rule does not work for this calculation.

