

Worksheet: The Bohr model and Spectra

- 1. The Bohr Theory of the atom states that electrons can only exist in specific energy levels. If an atom absorbs energy, its electrons are temporarily at a higher energy level and the atom is said to be in an excited state.
 - (a) Describe three ways by which an atom can be caused to be in an excited state.
 - (b) By what process can an atom lose its excited state? To what state does it go to?
- 2. Bohr predicted the energy levels of a hydrogen atom by using the relationship:

$$E_n = \frac{-13.6 \text{ eV}}{n^2}$$
 where $n = 1, 2, 3,$

- (a) Use this relationship to find the energies of the fifth and sixth energy level of the hydrogen atom (E_5, E_6) .
- (b) Determine the wavelength of a photon that would be emitted by an electron transition from E_6 to E_5 .
- (c) In which part of the electromagnetic spectrum does this photon belong?
- 3. The first four energy levels of an atom are shown at right.
 - (a) Why are the energies indicated as negatives?
 - (b) What minimum energy would be required to:
 - (i) cause this atom to attain an excited state,
 - (ii) cause this atom to become ionised?
 - (c) If the atom is excited to the E₃ level, what are the possible photon energies emitted thereafter? Determine the maximum frequency of these photons

- 4. The first three energy levels of a sodium atom are shown. The electron transition between E_2 and E_1 result in visible light ($\lambda = 5.89 \times 10^{-7}$ m) while the transition between E_3 and E_1 result in ultraviolet light ($\lambda = 3.88 \times 10^{-7}$ m).
 - (a) Determine the wavelength of the photon which would be released by an electron transition between E_3 and E_2 .
 - (b) To which region of the e/m spectrum does this photon belong?

- 5. A few of the energy levels of an atom are shown at right.
 - (a) If this atom is in the ground state what minimum frequency photon will cause it to be ionised?
 - (b) How many different frequency photons are possible when ionised atoms of this element return to the ground state? Show each possible transition that results in the emission of a photon on the diagram.
 - (c) Determine the longest wavelength in the emission spectrum of this atom.

- 6. The first four energy levels of a hydrogen atom are -13.6 eV, -3.4 eV, -1.5 eV and -0.85 eV.
 - (a) If this atom is bombarded by photons with energies up to 12.0 eV, which photon energies would be absorbed?
 - (b) If this atom was instead bombarded by electrons with energies up to 12.0 eV how would the interaction between the atom and the electrons be different to that with the photons?
 - (c) If this atom was in an excited state with its electron at the E₃ level, what would be the highest frequency photon it could emit as it returned to the ground state?
- 7. Atoms of mercury are to be bombarded with photons. Use the energy levels shown to answer the following:
 - (a) What would occur if a stream of photons of 7.5 eV were used to bombard mercury atoms?
 - (b) If all photon energies up to 10.0 eV were used, which photons would be absorbed?
 - (c) In this latter case which photon energies would be emitted?

- 8. Minerals such as calcite and fluorite can often be fluorescent due to the presence of rare earth elements which can absorb short wavelength light and then re-emit it at longer wavelengths. In one such occurrence photons of 1.15×10^{15} Hz are absorbed and then the energy is released in two separate photons. If one of the photons emitted has an energy of 2.07 eV determine:
 - (a) The energy of the other photon emitted,
 - (b) The wavelengths of the two photons emitted,
 - (c) The part of the e/m spectrum or colour that these photons belong to.
- 9. When taking chest X-rays the voltage required can be as high as 120 kV. The current drawn is 100 mA while the duration of the X-ray is 0.040 s. Determine:
 - (a) The kinetic energy of the electrons accelerated towards the target anode.
 - (b) The maximum possible frequency of the X-rays produced.
 - (c) Assuming that the average photon energy is half of the maximum energy, calculate the number of photons you are exposed to during a typical chest X-ray.

Answers:

- 1. a) Atoms can be excited:
 - i) thermally
 - by bombarding electrons ii)
 - iii) by absorbing photons
- $E_5 = 0.544 \text{ eV}$ $E_6 = 0.378 \text{ eV}$ 2. a)
 - $7.48 \mu m$ b)
 - c) IR
- 7.96 x 10⁻¹⁹ J i) 3. b)
 - $1.34 \times 10^{-18} \,\mathrm{J}$ ii)
 - E₃ \rightarrow E₁ = 1.0 x 10⁻¹⁸ J E₃ \rightarrow E₂ = 2.08 x 10⁻¹⁹ J E₂ \rightarrow E₁ = 7.96 x 10⁻¹⁹ J c)

$$E_2 \rightarrow E_1 = 7.96 \times 10^{-19} \text{ J}$$

Max frequency = $1.51 \times 10^{15} \text{ Hz}$

- 4. $\lambda = 1140 \text{ nm}$ a)
 - b) IR
- $1.24 \times 10^{15} \text{ Hz}$ 5. a)
 - 10 b)
 - $2.23 \mu m$ c)
- 6 10.2 eV a)
 - All energies between 10.2 eV and 12.0 eV b)
 - $2.92 \times 10^{15} \text{ Hz}$ c)
- 7. no interaction a)
 - 4.90 eV, 6.70 eV, 8.80 eV b)
 - 8.80 eV, 6.70 eV, 4.90 eV, 3.90 eV, 2.10 eV, 1.80 eV c)
- 2.70 eV 8. a)
 - 601 nm (red/orange), 460 nm (blue) b)
- 1.92 x 10⁻¹⁴ J 9. a)
 - $2.90 \times 10^{19} \text{ Hz}$ b)
 - 5 x 10¹⁶ photons c)